
Does Feature Mining Help Neural Networks?:
In Perspective of Tag Prediction

Miyoung Ko
Graduate School of AI

KAIST
Seoul, South Korea

miyoungko@kaist.ac.kr

Soyoung Yoon
Graduate School of AI

KAIST
Seoul, South Korea

lovelife@kaist.ac.kr

Kyumin Park
School of Computing

KAIST
Daejeon, South Korea

pkm9403@kaist.ac.kr

ABSTRACT
In the rise of online question-answering platforms, question
tag prediction has been an important problem in order to re-
duce redundant questions and to provide related information
to users. Many recent works utilize content information such
as question text, to improve tag prediction. However, with-
out having additional content information other than graph
structures, most methods do not effectively work for ques-
tion tag prediction. In this environment, we test whether a
combination of feature mining approach and neural network-
based approach to overcome this shortcomings. Through our
experiments, we conclude that concatenating additional fea-
tures such as answerer importance, and relational tag clus-
tering does not help on the neural-network based question
tag prediction.

1. INTRODUCTION
Since questions and answers are one of the most funda-

mental methods to gather and share information, arise of on-
line platforms12 that enables share questions and answers in
each domain has been natural in the era of internet. In order
to reduce redundant questions and provide related informa-
tion to users, the question answering platforms introduce
tag attached to each query. Representing characteristic of
each query as a set of tags, platforms categorize and clus-
ter similar questions and use these characteristics for several
services including recommendation. Since incorrect tag or
too high delay would be not accepted for users, accurate and
efficient tag prediction is needed for applying tag system to
service.

Studies to predict tag efficiently and accurately already
exist in several domains [4, 2]. However, many of the pre-
vious works mainly focus on the content, i.e., question and
answer text [1, 6]. Even these methods successfully predict
tags of each query, models have been taught relation between

1https://stackoverflow.com/
2https://mathoverflow.net/

.

query characters and tag, not relation between queries. This
does not fit our environment, content-related information is
not provided.

In our environment, no content-related information in-
cluding question or answer text is provided. We need to
utilize limited information to predict appropriate tag. Given
information is: the set of query index, tag of some queries
(train/dev), and answerer ids with query indices that each
answerer responds. Using these information, we need to
predict tag of queries whose ground truth is not provided.
Therefore, strategy different from previous text-based tag
prediction is required to solve this problem.

In order to predict appropriate tag with restricted infor-
mation, we use graph structure to represent relationship
among queries, tags and answerers. Since given information
consists of relation between some subjects (e.g., answerer-
query, query-tag), we can build several graph structures with
various node-edge configuration. However, expected prob-
lem of graph construction exists that the number of tags
to predict is too big to map from single graph. To resolve
this large-label problem, we extract available feature from
existing data then add features within graph, then use this
feature as an input for graph neural network, e.g., node2vec
[3] or graph convolution network [5]. Also, we vary predic-
tion scheme rather than computing probability of each tag,
including hierarchical prediction or tag embedding.

Summing up, we solve tag prediction problem with several
graph representation, feature engineering for graph, and var-
ious tag prediction strategy. We argue that the contribution
from our proposed method is:

• We propose two different graph representation to com-
pute varied possible tag-related features.

• We add engineered feature and graph neural network
methods to utilize limited amount of data.

• We propose various feature engineering and mining to
find appropriate characteristics from dataset.

2. PROPOSED METHOD
To predict the tag of each question, we first construct two

types of graphs as shown in Figure 2. The first structure is
the homogeneous graph with only one type of node, which
represents the answerer. When the pair of answerers answer
the same question, corresponding nodes are connected by
the edge. The second is a bipartite graph with answerer
nodes and question nodes. Each edge between answerer and
question represents a relationship that question answered by



Figure 1: Illustration of TagRank. Nodes indiate the An-
swerers, and edges indicate the questions that each answerer
answered. Tag information are stored in each node (An-
swerer), weighted in importance. Given that question 3(red)
is from the valid dataset, we can calculate the tag informa-
tion by aggregating the weighted answerer tag information
by the adjacent nodes and thresholding it. The weights for
each answerer are defined by the number of questions each
answerer answered. Normalization function is omitted for
clear explanation.

the answerer. We call each structure as Answerer graph and
Question-Answerer graph.

With two types of graph structures, we propose four meth-
ods: (i) TagRank, (ii) Answerer GCN (Ans GCN), (iii)
Question-Answerer GCN (Q-Ans GCN), and (iv) GCN with
TagRank. TagRank is the data mining approach where it
aggregates the answerer information to predict the question
tag. The second and third methods utilize GCN (graph
convolutional network) structure on each graph structure.
Lastly, we propose the combined method to overcome the
limitations of TagRank and GCN-based methods.

2.1 TagRank

2.1.1 Motivation
We start with the simple intuition that tag information

with respect to answerers whom answered the target ques-
tion should be aggregated to predict tags from an unknown
question. We believe that this approach is novel in that
we didn’t convert question information and tag information
into nodes, and rather converted it to relational features
with respect to answerers. However, we additionally thought
that answerers who answered more questions are likely to be
experts in the field, therefore the tags that those answerer
answered are more likely to be trustworthy. Therefore, we
multiply importance scores from each answerers by the num-
ber of questions each answerer answered to give a weighted
sum of tags when aggregating tag information from related
answerers. We also list the hyperparameters that we tuned
for each dataset on Table 1.

2.1.2 Calculating tag id predictions
Fig 1 illustrates how TagRank are calculated. We will now

describe in detail with examples about how we implemented
our TagRank method.

Tagweight assignment to answerers. We first con-
struct an answerer tagweight. Suppose Qi is the set of ques-
tion ids that answerer number i (Ai) answered. Than for
all question id q {∀q ∈ Qi} that are in Qi, we sum all the

Hyperparameters
Tested
values

Meaning

Value
threshold

0.01∼0.03 Threshold for tagweights

Minimum
length

1∼2 minimum number of tag ids in each question.

Maximum
length

1∼10 maximum number of tag ids in each question.

Frequent
tag length

1∼5 number of most frequently appeared tags

Frequent
tag threshold

1∼5 Threshold value to determine frequent tags

Consider
importance

TRUE or
FALSE

Whether to consider the answerer importance.

Table 1: Explanation of experimented hyperparameters for
TagRank.

related tag ids t, which is {∀t ∈ q} related to question q for
all q, with repetition. This means that tag ids that appear
multiple times in multiple questions related to a particular
answerer can have a higher weight compared to tag ids that
appeared only once throughout the summation. The output
of summed tag ids for each answerer i are then represented
as bag-of-words. For example, if the total of all tags is 5
and answerer 1 (A1) had summation of 2 t1 and 1 t3, the
tag weight vector of answerer 1 can be represented as vectors
with values as frequencies, where each index corresponds to
the tag id. Therefore, the tag vector becomes [2, 0, 1, 0, 0],
meaning answerer 1 has 2 occations of t1 and 1 occation of
t3.

Normalization. For fair comparison, we then normalize
the values to make the sum be always 1. In this example,
the tagweight vector will become [2/3, 0, 1/3, 0, 0].

Thresholding. To get rid of unncessary information
and only leave out important information, we threshold the
tag values. Suppose the tagweight vector for answerer i is
vi, the output vector becomes F (vi). Given the thresholding
value k, the thresholding function F (t) works as follows:

F (t) =

{
0 if t < k

1 if t ≥ k

In our example, if k=0.5, the output tagweight vector then
becomes [2/3, 0, 0, 0, 0]. We are now done calculating the
tagweight vector vi for answerer i.

Tagweight assignment to question ids. We now
calculate the tagweight vector for unknown question k qk.
For all answerers that answered question qk - that is, ∀Av ∈
(∃qk ∈ Qv), we sum the tagweight vectors of all Av. When
we consider importance, we do a weighted sum of each tag-
weight vectors by the number of questions each answerer an-
swered. Than, we normalize the weighted sum of tagweights
from all related answerers.

Argsort & output. We then sort the values and pick
up the indexes. During this process, we first select minimum
length amount tag ids no matter the values are (minumum
length). Than, we discard indexes that have 0 values, or
have lower values than value threshold (explained at Table
1). We then select the rest until we reach maximum length.
If the total number of selected tag ids are smaller than the
frequent tag threshold, we replace the selected tag ids to
top-k frequent tag ids (selected by frequent tag length). The
final output becomes the predicted tag ids for unknown ques-
tion k.



(a) Answerer Graph Structure

A 1 A 2 A 3 A 4

Q1 Q2 Q3 Q4 Q5

[10, 100, 15, 25] [17, 290, 15] [15] [87, 911, 29] [15, 28, 102, 293]Question
Tag

(b) Question-Answerer Graph Structure

Figure 2: Illustration of two graph structures. (a) Answerer graph structure only has answerer nodes, and a question is
represented as an edge. Connection between two nodes indicates that a question is answered by the answerers. (b) Question-
answerer graph is a bipartite graph that each node represents answerers and questions. The edge between a answerer and a
question node reflects whether each answerer answers each question.

2.2 Answerer GCN
Using same graph structure as TagRank method, we can

introduce graph convolutional network. Manual algorithm
to compute answerer feature has limitation that non-perceptible
or indirect features are not considered, and this limitation
can be alleviated with neural network-based methods.

Given answerer graph in Fig 2-(a), let j-th node has d-

dimension embedding e(j). Here, the goal becomes to find
best embedding so that the combination of embeddings best
predicts tags of each query. Randomly initialized embed-
dings are computed to contain answerer information with
graph convolutional network. Next, we aggregate answerer
embedding for each query and compute summation of aggre-
gated embedding. Regarding the summed vector as latent
vector of query, we predict the tag of the query using fully
connected layer: h(i) =

∑
j∈q(i) e

(j) where q(i) denotes i-th

query and h(i) is representation vector of q(i). As an output
of the model, logit vector that each space represent single tag
is obtained. We use binary cross entropy as a loss calcula-
tion on aggregated embeddings, since there is no restriction
in the number of tag for each query.

2.3 Question-Answerer GCN
Unlike the previous approach, with a question-answerer

graph, the tag prediction problem formulates as the node
classification. Question-answerer graph consists of two types
of nodes; question nodes (q) and answerer nodes (a). For i-

th question node q(i), the corresponding tag of the question

is now represented as a node label, y(i) = [y
(i)
1 , y

(i)
2 , ..., y

(i)
T ]

where y
(i)
k ∈ {0, 1} and T is number of tags. Our goal is

to obtain a node representation of each question node and
predict a tag label using the representation.

We utilize a similar GCN structure as in Method 2. Both
question and answerer nodes are first embedded to d- di-
mensional vectors. As explicit information on each question
and answerer is not provided, we use a randomly initialized
vector as the initial node embedding. We stack two layers
of GCN and one fully connected layer with sigmoid activa-
tion on the embedding layer to predict labels. Additional
residual connection from the embedding layer to the GCN
output improves the performance. The model is optimized
to minimize weighted binary cross-entropy loss on all train

labeled question nodes:

L =

N∑
i=1

T∑
k=1

αy
(i)
k log(σ(h

(i)
k ))+(1−y(i)k )log(1−σ(h

(i)
k )) (1)

where h(i) is the output of the last layer, α is the weight of
positive examples, and σ(·) is the sigmoid function.

As the number of positive tags is much less than negatives,
models easily converge to local minimum whose predictions
are all negatives. To control this issue, we give additional
weight α to positive classes.

2.4 GCN with TagRank
For GCN-based models, we initialize the node embedding

as a random vector. In our problem setting, we only have
connection information between questions and nodes with-
out explicit feature information. However, a deep neural
network like GCN is effective when it incorporates rich fea-
ture information of each node with connection information.
To address this lack of information, we combine the data
mining approach and the deep-learning approach.

We obtain answerer features and importance scores of an-
swerers in TagRank. A set of tags answered by the answerer
represent the answerer node and the importance of each an-
swerer is calculated by simple statistics. This information
can be used as the feature information of each node or edge
in a graph. By combining this feature information in node
embedding, GCN-based models have more opportunities to
encode important information. We call this method GCN
with TagRank.

We utilize the same graph and GCN structure as Question-
Answerer GCN (Section 2.3). We combine TagRank results

of answerer and question as the node feature. T
(i)
n is the

answerer feature of i-th answerer and T
(j)
q is the question

feature of j-th question. Both Tn and Tq are obtained by the
equation (1). We first project Tn and Tq into d-dimensional
vectors, using two fully connected layers for each question
and answerer node. Input for the GCN layer is now con-
verted as the sum of projected TagRank vectors and ran-
domly initialized embedding vectors, calculated as below.

x̂q = xq + g1(Tq)

x̂n = xn + g2(Tn)
(2)



Mathoverflow Stackoverflow
Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

Random (Bernoulli) 0.1818 49.9239 0.3619 0.0498 49.8710 0.0996
Random (Fixed # tags) 0.1846 0.3469 0.2303 0.0651 0.0145 0.0857
Frequent (Fixed # tags) 9.3216 18.8664 11.8599 7.3364 16.9640 9.8214

TagRank 34.7935 30.0350 30.3047 10.2872 12.9211 10.8066
Ans GCN 9.7021 8.4078 8.4194 5.2035 14.0905 7.1029
Q-Ans GCN 35.2126 33.5538 30.6928 10.1036 12.4742 10.1788

GCN with TagRank 32.6831 35.2241 30.1862 9.4689 12.4056 9.8705

Table 2: Results on different methods for tag prediction. Random bernoulli indicate random binary tag prediction output
results (which can be treated as baselines), and Random fixed tags indicate random tag predictions on a fixed number of tag
size. The two methods are values averaged over 3 different seeds. For mathoverflow, mathoverflow has average of about 5 tags
per question, and stackoverflow has about 6 tags per question. Considering the statistics, we experiment with those baselines
to show the effectiveness of our proposed methods. We report our best accuracy of each of our methods.

where xq and xn are the node embedding vectors, and g1, g2
represents linear layers for TagRank vectors. The combined
inputs, x̂q and x̂n, are feed into the same GCN model as in
Question-Answerer GCN to predict the node labels.

3. EXPERIMENTS
For the entire experiment, we use query ids, tag ids for

each query, and answerer ids for each query as inputs of all
models. We report precision, recall, and F1 score of predic-
tion inferred with two different datasets: Stackoverflow and
Mathoverflow.

3.1 Baselines
We first experiment with naive baselines to see the effec-

tiveness of our methods compared with random and simple
methods. We experiment with three baselines: (1) random-
bernouii, (2) random-fixed-ntags, and (3) frequent-fixed-ntags.
For random-bernouii, for each question, we assign both (1)
number of tags and (2) tag ids randomly. After inspection,
we found out that the average number of tags per each ques-
tion is 5 for Mathoverflow, and 6 for Stackoverflow. There-
fore, we conduct a more precise approach by random-fixed-
tags. Compared with random-bernouii, (1) number of tags is
fixed to 5 for Mathoverflow and 6 for Stackoverflow. only (2)
tag ids are defined randomly. Lastly, we conduct frequent-
fixed-ntags, where (1) number of tags is fixed to the same as
random-fixed-tags and (2) tag ids are chosen as top-k tag ids
that appeared most frequently in the train query. random-
bernouii and random-fixed-ntags are experimented with 3
different seeds and averaged.

3.2 Result & Discussion
Table 2 shows our results, including all methods proposed

in Section 2 and the baselines. For the TagRank, we report
implementation with importance rate, since importance rate
is revealed to have insignificant influence to the performance.
Hyperparameter for TagRank is reported in Appendix. For
GCN with TagRank, we use Question-Answerer GCN model
for GCN as described in Section 2.4.

It is clear that our proposed methods outperform random
method baselines, which record 0.36 and 0.23 for Mathover-
flow and 0.085, 0.099 for Stackoverflow. Since the task is
selecting maximum 5 appropriate tags from 1429/6790 tags,
bernoulli baselines should report low accuracy. Recall of
bernoulli baseline (around 49%) proves that the tags are se-
lected randomly, since the half of correct tags are predicted

as query’s tags. Random method with the fixed number
of tags reports lower F1 score than the baseline without tag
number restriction, since the number of predicted tags grad-
ually decreases.

Compared to two random method baselines, our methods
report higher precision, recall and F1 score. This proves
effectiveness of tag prediction based on previous query-tag
information and query-answerer information. Also, our as-
sumption - one answerer may answer to similarly-tagged
query, and answerers who answer to same query will appear
spontaneously in another query in similar tags - is proved
through the results, which record 20 to 100 times higher F1
score than random method baselines.

Among the proposed methods from TagRank (Section 2.1)
to Quention-Answerer GCN (Section 2.3), Answerer GCN
(Section 2.2) records lower overall score than the other meth-
ods and frequent method baseline. We suspect that this
low score results from shortage of information. For An-
swerer GCN, we only construct answerer graph, and rep-
resent query and tag information by summation of some
nodes in answerer graph. This method to utilize given infor-
mation is insufficient for deep learning-based method, which
needs larger amount of data for training. TagRank method
(Section 2.1) record higher score than Answerer GCN since
it uses explicit feature mining rather than deep learning,
where feature mining provides clearer characteristic than
deep learning method for each query to predict the tags.
Question-Answerer GCN (Section 2.3) utilizes query and tag
information when constructing graph, which provides larger
information during training.

When merging TagRank method and GCN-based method
as described in Section 2.4, we use Question-Answerer GCN
as a GCN-based method since Question-Answerer GCN records
higher F1 score than Answerer GCN. The result shows that
applying TagRank into Question-Answerer GCN does not
increase the F1 score in either dataset. We suspect two
reasons that applying TagRank does not help GCN per-
formance: increased latent space and computed TagRank
features in GCN training procedure. First, TagRank has
larger feature space in oreder to represent all tag informa-
tion in each node. This means, there exists no linear layer
to expand latent vector to tag prediction space (size is equal
to the number of tags), so that the TagRank nodes need
to have dimension whose size is at least the number of the
tags. Therefore, merging TagRank features into GCN may
increase the dimension of latent vector, which makes feature



extraction more difficult than lower dimension with small
size of data. Next, GCN training might already extract
features defined in TagRank. During GCN, node vectors
may already represent TagRank features including tag im-
portance or answerer relativity. In this situation, adding
TagRank features could be redundant for GCN model, which
result in similar score with GCN-only model.

4. CONCLUSIONS
In this project, we explore the influence of feature min-

ing toward the GCN-based method in tag prediction task.
Throughout the experiments, we prove that both feature
mining approach and GCN-based approach outperforms ran-
dom baselines, and tested whether applying feature mining
improves performance of GCN-based method. Since adding
feature mining and GCN-based method does not improve
performance compared to each individual model, it is con-
cluded that adding feature mining does not help GCN-based
method. According to our conclusion, tag prediction with
additional information might be effective for more precise
result.

5. REFERENCES
[1] José R. Cedeño González, Juan J. Flores Romero,

Mario Graff Guerrero, and Felix Calderón. Multi-class
multi-tag classifier system for stackoverflow questions.
In 2015 IEEE International Autumn Meeting on Power,
Electronics and Computing (ROPEC), pages 1–6, 2015.

[2] Francisco Charte, Antonio J. Rivera, Maŕıa J. del
Jesus, and Francisco Herrera. Quinta: A question
tagging assistant to improve the answering ratio in
electronic forums. In IEEE EUROCON 2015 -
International Conference on Computer as a Tool
(EUROCON), pages 1–6, 2015.

[3] Aditya Grover and Jure Leskovec. node2vec: Scalable
feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 855–864,
2016.

[4] Paul Heymann, Daniel Ramage, and Hector
Garcia-Molina. Social tag prediction. In Proceedings of
the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
SIGIR ’08, page 531–538, New York, NY, USA, 2008.
Association for Computing Machinery.

[5] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[6] Prabhnoor Singh, Rajkanwar Chopra, Ojasvi Sharma,
and Rekha Singla. Stackoverflow tag prediction using
tag associations and code analysis. Journal of Discrete
Mathematical Sciences and Cryptography, 23(1):35–43,
2020.

APPENDIX
A. APPENDIX

A.1 Implementation Details

A.1.0.1 TagRank.
We use the networkx library 3 for implementation. You

can fully reproduce the results for TagRank on this tagrank
colab repository . The hyperparamters are also shown on
this repository. Implementations on baseline random exper-
iments are shown on this random baseline colab reposi-
tory (google drive with datasets should be mounted).

Experiments with full log of different hyperparameters are
shown in Table 3 and Table 4. In Table 3 and Table 4, best
results that are reported in the main table is highlighted
in bold. Meanings of each row are described in Table 1.
Replaced percent indicates the proportion of valid queries
which had prediction numbers smaller than the frequent tag
threshold and thus the prediction outputs replaced to pre-
defined frequent tags. The computation time of TagRank is
extremely faster, compared with other GCN based methods.
For each experiment, it takes less than a minute to finish the
question tag prediction for TagRank.

A.1.0.2 Answerer GCN.
This method is implemented by pytorch-geometric 4. The

model is optimized using an AdamW optimizer with a learn-
ing rate of 0.0005. We set embedding and hidden dimen-
sions as 1024 for both StackOverflow and Mathoverflow. For
Mathoverflow, the model is trained by batch size 51200 with
α = 10. For Stackoverflow, the batch size is 25600 and α is
10.

A.1.0.3 Question-answerer GCN.
This method is implemented by DGL 5. The model is

optimized using an AdamW optimizer with a learning rate of
0.004. We set embedding and hidden dimensions as 512 for
both StackOverflow and Mathoverflow. For Mathoverflow,
the model is trained by batch size 20000 with α = 10. For
Stackoverflow, the batch size is 10000 and α is 13.

A.1.0.4 GCN with TagRank.
GCN with TagRank follows a similar implementation as

Question-answerer GCN. The batch size is 20000 with α =
12 for Mathoverflow and 10000 with α = 12 for Stackover-
flow.

A.2 Labor Division
The team performed the following tasks

• Implementation of TagRank, conduct baseline experi-
ments [Soyoung]
• Implementation of question-answerer GCN and GCN

with TagRank, wrote the corresponding method [Miy-
oung]
• Implemetation of answerer GCN, wrote corresponding

method and introduction [Kyumin]
• Wrote abstract and overall [All]

3https://networkx.org/
4https://pytorch-geometric.readthedocs.io/en/latest/
5https://www.dgl.ai/

https://colab.research.google.com/drive/1Q4cu7WTreftmIROdZ_qvnPuj6BDz-iUE?usp=sharing
https://colab.research.google.com/drive/1Q4cu7WTreftmIROdZ_qvnPuj6BDz-iUE?usp=sharing
https://colab.research.google.com/drive/1FSdPp1y5eeuU825xWN6GgHACFT9VCZXY?usp=sharing
https://colab.research.google.com/drive/1FSdPp1y5eeuU825xWN6GgHACFT9VCZXY?usp=sharing


value
threshold

minimum
length

maximum
length

frequent
tag length

frequent
tag threshold

consider
importance

f1 prec rec
replaced
percent

0.02 1 1 1 1 TRUE 26.92% 45.84% 20.72% 0.24%
0.02 1 2 1 2 TRUE 29.66% 34.01% 29.43% 0.47%
0.02 2 3 1 3 TRUE 29.13% 27.61% 35.20% 0.97%
0.02 2 5 1 3 TRUE 26.26% 20.58% 42.32% 0.97%
0.02 2 6 1 3 TRUE 25.02% 18.60% 45.01% 0.97%
0.02 2 1 1 3 TRUE 8.64% 14.90% 6.65% 100.00%
0.02 2 1 3 3 TRUE 11.83% 11.43% 13.94% 100.00%
0.02 1 3 1 3 TRUE 29.13% 27.61% 35.20% 0.97%
0.02 1 5 1 5 TRUE 26.02% 20.56% 41.86% 2.92%
0.02 1 4 1 4 TRUE 27.58% 23.38% 38.94% 1.76%
0.02 1 2 1 1 TRUE 29.72% 34.10% 29.49% 0.24%
0.02 1 3 1 1 TRUE 29.29% 27.77% 35.36% 0.24%
0.02 1 5 1 1 TRUE 26.41% 20.74% 42.48% 0.24%
0.02 2 3 1 1 TRUE 29.29% 27.77% 35.36% 0.24%
0.02 2 4 1 1 TRUE 27.82% 23.56% 39.25% 0.24%
0.01 2 4 1 1 TRUE 27.82% 23.56% 39.25% 0.24%
0.01 1 2 1 1 TRUE 29.72% 34.10% 29.49 0.24%
0.03 2 3 1 1 TRUE 29.29% 27.83% 35.30% 0.24%
0.03 2 10 1 1 TRUE 25.83% 19.99% 45.64% 0.24%
0.03 1 2 1 1 FALSE 30.30% 34.79% 30.03% 0.24%
0.03 1 2 1 1 TRUE 29.72% 34.10% 29.49% 0.24%
0.01 1 2 1 1 FALSE 30.30% 34.79% 30.03% 0.24%
0.01 1 3 1 1 FALSE 29.75% 28.23% 35.84% 0.24%
0.01 1 3 1 1 TRUE 29.29% 27.77% 35.36% 0.24%
0.02 2 6 1 5 FALSE 24.53% 18.63% 43.90% 4.05%
0.02 2 5 1 5 FALSE 25.87% 20.65% 41.49% 4.05%
0.02 2 5 1 4 FALSE 26.28% 20.87% 42.21% 2.40%

Table 3: Full hyperparameter experiment results on TagRank for mathoverflow.

value
threshold

minimum
length

maximum
length

frequent
tag length

frequent
tag threshold

consider
importance

f1 prec rec
replaced
percent

0.02 1 1 1 1 TRUE 8.81% 15.76% 6.58% 2.55%
0.02 1 2 1 2 TRUE 10.31% 12.27% 9.88% 3.45%
0.02 2 3 1 3 TRUE 10.57% 10.46% 12.29% 5.80%
0.02 1 2 1 1 TRUE 10.29% 12.22% 9.87% 2.55%
0.01 1 2 1 1 TRUE 10.29% 12.22% 9.87% 2.55%
0.02 1 3 1 1 TRUE 10.52% 10.27% 12.30% 2.55%
0.02 2 4 1 2 TRUE 10.25% 8.98% 13.96% 3.43%
0.02 2 4 1 2 FALSE 10.25% 8.98% 13.96% 3.43%
0.02 2 4 1 1 TRUE 10.23% 8.93% 13.95% 2.55%
0.02 1 4 1 1 TRUE 10.23% 8.93% 13.95% 2.55%
0.02 1 3 1 1 FALSE 10.52% 10.27% 12.30% 2.55%
0.02 2 5 3 1 FALSE 9.99% 8.02% 15.46% 2.55%
0.02 2 5 3 3 FALSE 10.12% 8.11% 15.61% 5.80%
0.02 2 6 3 3 FALSE 9.79% 7.53% 16.51% 5.80%
0.02 2 6 3 4 FALSE 9.86% 7.60% 16.60% 9.55%
0.02 2 6 4 4 FALSE 9.92% 7.56% 16.85% 9.55%
0.02 2 5 4 4 FALSE 10.26% 8.15% 15.95% 9.55%
0.02 2 4 4 4 FALSE 10.59% 9.02% 14.62% 9.55%
0.02 2 3 3 3 FALSE 10.74% 10.32% 12.62% 5.80%
0.02 1 2 2 2 FALSE 10.38% 12.21% 10.00% 3.45%
0.02 1 3 3 3 TRUE 10.74% 10.32% 12.62% 5.80%
0.02 1 3 3 3 FALSE 10.74% 10.32% 12.62% 5.80%
0.02 1 3 5 3 TRUE 10.80% 10.28% 12.93% 5.80%
0.03 1 3 5 3 TRUE 9.47% 8.67% 12.11% 25.32%
0.01 1 3 5 3 TRUE 10.80% 10.28% 12.92% 5.62%
0.02 1 4 5 3 TRUE 10.51% 8.95% 14.58% 5.80%
0.01 1 4 5 3 TRUE 10.50% 8.92% 14.60% 5.62%
0.01 1 3 5 3 FALSE 10.80% 10.28% 12.92% 5.62%

Table 4: Full hyperparameter experiment results on TagRank for stackoverflow.


	Introduction
	Proposed Method
	TagRank
	Motivation
	Calculating tag id predictions

	Answerer GCN
	Question-Answerer GCN
	GCN with TagRank

	Experiments
	Baselines
	Result & Discussion

	Conclusions
	References
	Appendix
	Implementation Details
	Labor Division


