
CS489 Group Report: Comment Clustering
Team 12: Soyoung Yoon, Jinwoo Jeon, Jisu Choi, Jeongyeon Jeon

We open our github link for code: https://github.com/wltn0029/comment-clustering

I. Introduction
Our project was implemented to improve the problems with the current YouTube comment

UI. Currently, there are two main problems with YouTube UI. First, it is not easy to see

various kinds of opinions at a glance due to the simple enumerated UI. In particular, the

ranking of comments is adjusted with its algorithm determined by YouTube. Users cannot

control the opinions they want to see. Second, the views of comments tend to be biased to

one side. It's easy to get a biased view of the video by just looking at a few comments on top

of YouTube. In other words, when opinions are going to be formed on a specific video, only

comments that are biased to one side are likely to result in an undesirable view. Likewise,

there is a problem in that personal view may be adjusted by malicious manipulation of

opinions.

Therefore, we classify YouTube comments into three categories based on their attitude

toward the video: Positive, Neutral, and Negative. Through the UI showing each item's

comments, the user can see more diverse opinions at a glance than before, and the

above-described problems can be improved.

II. Front-end description

Figure. 1 Logic diagram of back-end

https://github.com/wltn0029/comment-clustering

The overall logic flow of the front-end is shown in Fig.1. It extracts the comments from the

user's input of the YouTube video URL and sends them to the back-end. After that, the user

interface shows receiving the classified output from the back-end (positive, negative,

negative).

1) Service Design
In order for users to see the various responses of comments at a glance, a representative

comment for each category, positive, negative, and neutral, is shown on the first page. All

comments belonging to the selected category are shown on the second page so that users

can review the responses in more detail by category. The information provided is kept to a

minimum so that people can focus more.

The overall design color was set to light blue, and colors were not divided in order not to

prejudice each type of opinion. And it is designed so that only the contents can be grasped

at a glance using the clean font.

In the service page, three kinds of information is shown to the user.

- Video Information
Information from youtube url’s video is shown on top of the page. Users can check

topics covered in the video they select. Information from the youtube video includes

video image, channel name, title and descriptions. If the description is too long, we

shorten it with the show more button.

Figure. 2 Video Information Design

- Categorized Comments
We categorized the comments into three categories, positive, negative, and neutral,

depending on the content of the comments. When users fill out the YouTube link on the

input box and press the rearrange button next to it, they can see the representative

comments by category. A category’s name is written above the comments.

Representative comments are selected randomly among comments in the same

category. Users receive an equal amount of comments (one) for each category.

Figure. 3 Comments Design

- Thread of Comments per Category
Users can explore more diverse comments on each category by pressing the show

more button. The categories and buttons are kept on top so that they can be simplified

at any time by pressing the button. When viewing more opinions, only one category of

opinions can be viewed. Users have to close the thread to see other categories.

Figure. 4 Thread of Comments Design

2) Data Crawling
All data related to youtube video, information of video and comments, is crawled using

Youtube Data Api (https://developers.google.com/youtube/v3). We only use comments in the

main thread, excluding those in the thread per comment.

- Video Information
- Command Used

https://www.googleapis.com/youtube/v3/videos?part=snippet&key=${apiKey}&id=${v
ideoId}

- We include the title of a video and additional description written by the uploader of a
video.

- Comments
- Command Used

https://www.googleapis.com/youtube/v3/commentThreads?part=snippet&key=${apiK

ey}&videoId=${videoId}&maxResults=100

- We limit the number of comments as 100 since we determine more comments would

be difficult for users to consider.

3) Deployment

The service is deployed on the web using github deployment server. We decide to provide

service on the web for the following reasons :

- Web is accessible from both mobile phone and laptop.

- We aim to improve target users’ accessibility to the service who communicate a lot

on youtube given most youtube watchers’ environment is on the web.

https://www.googleapis.com/youtube/v3/commentThreads?part=snippet&key=$%7BapiKey%7D&videoId=$%7BvideoId%7D&maxResults=100
https://www.googleapis.com/youtube/v3/commentThreads?part=snippet&key=$%7BapiKey%7D&videoId=$%7BvideoId%7D&maxResults=100

III. Back-end description

Figure. 5 Logic diagram of back-end

The overall logic flow of the back-end is shown in Fig. 2. The comments list from the

front-end is divided into Korean comments and other language comments, and sentimental

classification is performed using each model. Finally, each classification result is merged and

sent to the front-end.

1) Models, Datasets, Training details.
We train a total of two models. The first one is for english sentiment classification(E-BERT),

and the second one is for Korean sentiment classification(K-BERT). For both models, we

utilized the pretrained BERT from the huggingface transformers library [1].

General. We use the AdamW optimizer with epsiolon 1e-8, and a linear scheduler with 10%

warmup step out of total training steps. We load the pretrained model and finetune it with 3

epochs with each sentiment dataset. We trained the model with a binary sentiment

classification task.

K-BERT. Learning rate is 2e-05, and the training seed is set to 42. We use the colab GPU

notebook when training. For training the K-BERT, we reference the existing colab notebook

that trained BERT with naver movie reviews.(NSMC) [3] We train by 3 epochs and get 87%

accuracy on the test set.

E-BERT. We load the pretrained bert-base-uncased model, then fine-tuned with using the

sentiment140 dataset. Sentiment140 dataset is extracted using the huggingface datasets

library [2]. There are a total of 1600000 train dataset, and 498 test dataset. Learning rate is

set to 5e-05. We use the P40 GPU model when training. By manual inspection, we found out

that there were only 2 classes(positive, negative) from the training data, and there were 3

classes(positive, neutral, and negative) for the test dataset. Therefore, we thought that it was

inappropriate to test the dataset on unseen classes(neutral) when training. As a result, we

only conduct training and do not report any accuracy results, evaluated from the test dataset.

We upload the fine-tuned K-BERT and E-BERT on google drive. The links are also present

in our README of our github repository. The codes used to train K-BERT and E-BERT are

also open inside the backend/model directory.

2) Classification Methodology (How we classified neutral text)
When searching for datasets that could be used to fine-tune our sentiment classification

model, we find that most of the datasets are composed of only two(binary) labels: positive

and negative. However, our objective of this project was to classify 3 classes: positive,

negative, and neutral. Therefore, we needed a way to define how we will classify neutral

text. The TextBlob python library also conducts sentiment analysis and output sentiment

scores ranging from -1 to 1. If the sentence is negative, it outputs -1, and if the sentence is

positive, it outputs 1. It outputs near 0 for neutral sentences. Although this library is not

based on machine learning but rather rule-based, we thought this could be a good

supplementary for revising our binary classification models. So, for E-BERT, before we input

the sentence to the model, we first conduct analysis using TextBlob and if the output scores

are near 0, (the absolute value is less or same as 0.1) we classify it as neutral. Otherwise,

we use the E-BERT to classify the sentences.

However, TextBlob only treats english sentences. Therefore, we needed to think of another

way to classify neutral sentences for Korean sentences. When we input a sentence, our

trained model outputs numbers with the dimensions to be the number of classes; since we

are doing a binary classification, we get two dimensional outputs from the model. There, we

take the argmax and select the index with higher value to be the predicted class. Inspired by

this scheme, we first made an assumption that the output of the classification model is linear

with the sentiment polarity: that is, the higher the model outputs for index related with

positiveness, the more positive the sentence is, and the lower score the model outputs for

index related with negativeness, the more negative the sentence is. After making this

assumption, we can also say that the more difference the model output has in relation to

positive & negative scores, the more certain, or more polar, the output is. Followed by this

assumption, we made a heuristic rule that if the difference from the value of positive index

outcome and the value of negative index outcome is smaller than 1, we classify the sentence

as neutral.

3) Model Server building

https://drive.google.com/file/d/1hxghxWqEoXWdOu7fCFtDco9Ji50D6E4T/view?usp=sharing
https://drive.google.com/file/d/1WGX3CkiJMv7l5OM0_RM2NOxN2FD5T2GY/view?usp=sharing

In our project implementation, the front-end server that interacts with the user and the

back-end server that executes the model are separated into separate hosts. Therefore it was

necessary to build a model server to communicate with the front-end server.

Since the classification model described above uses GPU parallel computation, sufficient

computational resources: GPU resources and RAM resources are required for the back-end

server's host computer. Therefore, a host computer with hardware specifications, as shown

in the table below, was used as the model server's physical host.

GPU NVIDIA GeForce GTX 1650

CPU Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

8-cores

RAM 16 GB

CUDA ver. 11.1

Table. 1 Hardware specification of back-end server computer

Since the back-end uses a model that has already been tuned through fine-tuning on a

pre-trained model, the above hardware specification can be said to have sufficient

specifications for the project.

The Python Flask Web framework was used as a software wrapper for building a model

server. Server’s physical mapping informations using Flask are as follows:

- internal IP address: “0.0.0.0”, which means broadcast to the network

- internal port number: 8080

- external IP address: 143.248.144.129

- external port number: port forwarding was used

Therefore, by setting the Flask server in the host computer through this physical mapping, it

is configured to allow data transmission and reception with the front-end, as shown in the

figure below.

Figure. 6 Execution of model server

Fig. 3 shows the running of the model server using flask on the host computer.

Figure. 7 Response output from back-end server

Fig. 4 shows that the classified results received from the model server were shown in the

network console of the Chrome browser by giving an arbitrary youtube URL for the test.

Figure. 8 Request input from front-end server

Fig. 5 shows that the back-end server received the POST request from the front-end server

correctly. After receiving the request from the front-end server, the back-end server sends

classified output as shown in Fig. 4.

Until now, there are issues related to HTTPS certification, since we had to use HTTPS

protocol with private certifications. Therefore, in the currently implemented phase, the model

server can receive the request only from a specific client host (for example, Chrome browser

on a specific laptop) and send a response.

4) Application function
The following describes the function's logic implemented in the model server for actual

classification and data transmission/reception. The overall logic flow is the same as in Fig. 2.

Function: do_analysis()

STEP 1) garbage collection
collects garbage for caches created by previous analysis work.

STEP 2) get request input from front-end
receives dict-type data sent from the front-end and extracts it in an appropriate

format.

STEP 3) separating Korean comments
Since there are two models we use, the Korean and BERT models, Korean

comments are separated for use with the Korean model.

STEP 4) For other languages, translate them into English
All other languages, including English, are translated into English to use the BERT

model. The translation was done by using the google translator API distributed by

Google [4].

STEP 5) extract plain text from comment input
To perform sentimental analysis, plain text is extracted from each comment element.

STEP 6) sentimental analysis
After performing sentimental analysis using each model, the score is calculated as

shown in III-2).

STEP 7) classify comments according to sentimental scores
Each comment corresponding to the score is mapped and classified into

positive/neutral/negative items.

STEP 8) make output
The output is made in the form of a dict whose keys are pos, neg, and neu.

STEP 9) send the output to the front-end

The maximum number of comments accepted for a YouTube URL input is 100. If this is

processed as a simple loop, the time complexity of the do_analysis function will be O(n).

That does not fit our project's purpose that guarantees real-time performance. Therefore, to

reduce the computing time, STEP 3~7 performed parallel processing using python's

multiprocessing library.

The number of CPU cores used for parallel processing is 6, which is 3/4 of the total number

of CPU cores described in Table 1.

IV. User Feedback
After implementing the user interface and model, we tested our service for 12 users to get

user feedback and contemplate on our service’s overall design. Most of them agreed on the

necessity of our service, but they pointed out low accuracy of model classification and limited

control over standard of category.

1) Participants
12 people who are in their 20's participated in our service’s BETA-test. Given the main

purpose of service providing a new interface of youtube comments, the test was

conducted on the most actively participating age group in Internet communication.

2) Method
Survey is divided into two parts : before using service / after using service. Survey

before using the service aims to look into users’ thoughts about youtube comments.

Survey after the service aims to investigate 1) whether the purpose of service is

conveyed properly to users, 2) utility of the service, 3) things to improve. Users are

required to use the service for the same YouTube link to maintain the equivalence of

their answers. We guide users to participate in the survey through google form.

- Youtube link used in survey

(korean version) https://www.youtube.com/watch?v=Tm9Wzzr-DUI

(english version) https://www.youtube.com/watch?v=MXuog-hJfes

https://www.youtube.com/watch?v=Tm9Wzzr-DUI
https://www.youtube.com/watch?v=MXuog-hJfes

In order to get users' response clearly, we choose a video with a topic that could clearly

divide the opinions. In this survey, we use google form to guide users and aggregate

their responses.

3) Result
- Before using service

Chart. 1 What do you think youtube comment’s problem is?

As seen in chart 1, 33% of users selected youtube’s comment arrangement algorithm

as the problem of the youtube comment design. Also 33% of users responded they

used to realize comment manipulation when using youtube. Those are what exactly we

point out as the problem of the youtube comment system which we aim to improve in

the service. Some other problems users referred were provocative content, vertical

comment alignment, accounting for 12.5% respectively.

- After using service
We investigated the users' responses to the service for the following three points : 1)

exposure to diverse opinions, 2) effect to build perspective, 3) necessity of the service.

1) Exposure to diverse opinions
All participants responded they could see more various opinions compared to youtube

comments. It implies we implement the user interface properly fitting well with the

purpose of service.

2) Effect to build perspective
We compared the view changes on the same video’s topic using YouTube and our

service. Surprisingly, in both cases, the same percentage of respondents replied they

would affect their perspective on the video’s topic and vice versa. The result was

analyzed as follows :

- Comments were not classified as one of categories, positive, negative, neutral,

accurately enough to derive significant differences between youtube comments.

- As we selected representative comments randomly, they did not express the nature

of the category explicitly.

- Since users hadn’t built their own perspective on the topic we chose, they tended to

be affected easily with others’ opinion.

For any reason among them, it is clear that we should improve our service design to

have a better impact on building opinion than YouTube.

3) Necessity of the service
Almost every participant except one responded they were willing to use our service if

available. It implies not only users ordinarily recognize the youtube comments system

has a problem, but also they interact a lot through comments as wanting new design of

comments. This suggests that more research should be done on the design of

comments as the comment is where internet communication occurs actively.

Table 2 shows aggregated responses on closed question survey conducted after using

our service.

Question Yes No

See more diverse opinions 12 0

perspective change on video’s topic
using our service

8 4

perspective change on video’s topic
using youtube

8 4

Willing to use services 11 1

Table. 2 User’s responses on each closed question

- Things to Improve
We also investigated things to improve our service. Users responses are divided into

two parts : 1) Usability and 2) Service design.

1) Usability
- Video available on the service page

It was inconvenient for users to move around between the video page and the

comment. Since our service is based on youtube comments, implementing the

service as an extension form would lead to supplementary benefit : no need to

move pages / explore thread of interested comment. We leave it as future work.

- Additional information on the meaning of category
Since we only provide the name of the category, it was difficult for some users to

understand the meaning of the category. It is very important for users to know the

meaning of the category in our service, so we agree on the necessity to supply

information on what category means.

- Proportion of each category
Users responded providing a proportion of each category would help them to build

perspective on the topic of video. But we didn’t implement this one because we

thought being provided with a proportion of category can bias users toward the

side with more supporters. Since our service aims to prohibit that, we exclude

such information.

2) Service design
- Diversifying category

Some users responded they wanted more dynamic interaction in the service page,

especially for categories. Since we only provided three categories available,

positive, negative, neutral, they felt frustrated that they couldn't categorize the

comments as they wanted. As our project goal is exposing diverse comments to

users, the standard of category doesn’t matter. And we expect to provide an

opportunity for users to consider the comments more critically by making them to

rearrange comments themselves. We leave it as future work.

- Providing information on standard of classification
Some participants pointed out that there was no information on the standard of

classification and they were worried that our service would follow the problem of

the youtube comments system: Users have no information on how comments are

arranged. Given our service aims to solve the problem of YouTube sorting

algorithms, which implies that YouTube has all the information exclusively used in

sorting comments, such feedback asked a meaningful question on the overall

meaning and direction of our service. Therefore, we agreed that how model

classification standards can be conveyed to users should be included as future

work.

V. Conclusion
We have successfully implemented our comment clustering UI. We trained the english and

korean model for sentiment classification, build up our service by React, serve our service

through interaction from front-end and back-end, and got user feedback. Lastly, we will

discuss ways to improve our proposed product.

- Future works
Although we have successfully completed our comment clustering UI, there are lots of rooms

for improvements.

1. We only prepared two sentiment classification models for two languages: English and

Korean. For other languages, we relied on the translation api. If we were to improve

the accuracy, we may try to add more sentiment classification models with more

languages.

2. We applied some heuristics to classify neutral text out of binary classification models.

To further improve accuracy, we may try to find a training dataset that already has

neutral class texts, and not classify neutral texts by heuristic.

3. We may try to gain higher accuracy for BERT models. Currently Korean BERT

achieves 78% accuracy on naver movie review dataset. But, we do not know how

similar the training data and real youtube comments are. This accuracy and model is

only effective and meaningful when we can make concrete assumptions that the

training data distributions and the real-time inference data distributions(Youtube

comment data) are equal. If there are labeled datasets of youtube comments itself,

we may utilize them to gain more correct accuracy. Following this problem, it is

actually very vague whether the “polarity” that we want to capture could really be

represented as “sentiments”. We think that we need to define the polarity of

comments more precise to enable more effective comment clustering UI

4. We may optimize code for faster inference. Currently using the pretrained BERT

model takes a lot of time on inference, or prediction. Since there are a lot of

comments for a popular youtube video, we would need to speed up this inference

time by distributed processing, and making multiple servers.

5. By solving the HTTPS certificate problem, the model server should be extended to

receive requests from various clients and send responses.

6. Currently, the UI seems more focused on the information part of YouTube when

viewed by the user, so this needs to be addressed. If we make more than one

comment available by category when checking comments through additional

functions, and simplify YouTube information after the first search, our main function,

the classification of comments, will be more clear.

7. If we change the UI so that comments from other categories can be viewed together

when checking comments for each category, it will be more suitable for our purpose

of checking comments that are not biased.

VI. References
[1]: https://github.com/huggingface/transformers

[2]: https://github.com/huggingface/datasets

[3]: https://colab.research.google.com/drive/1tIf0Ugdqg4qT7gcxia3tL7und64Rv1dP

[4]: https://github.com/lushan88a/google_trans_new

https://github.com/huggingface/transformers
https://github.com/huggingface/datasets
https://colab.research.google.com/drive/1tIf0Ugdqg4qT7gcxia3tL7und64Rv1dP

