Regularizing and Optimizing RNN Language Models

Soyoung Yoon
20160413

Abstract

Regularizing and Optimizing LSTM Language
Models [3] introduce regularizing and opti-
mizing techniques that do not need modify-
ing original LSTM based model. But in or-
der to use this Language Model in real-life,
model has to meet several space and time lim-
itations. Therefore, We propose to make the
model further lightweight and faster to train
without much giveaway on perplexity. For ex-
ample, by changing the model from LSTM to
GRU, or from unidirectional LSTM to bidi-
rectional LSTM. As a result, we successfully
replicated the original paper’s model which
shows almost original perplexity. Then, we ap-
plied these techniques on GRU and biLSTM.
We concluded that the GRU model is faster
to train, but LSTM models show better per-
plexity results than the GRU model. Also bil-
STM models actually take longer time to train,
and they give extraordinary results. From this
experiment we learned that we have to train
and evaluate bidirectional LSTM models in a
different way. We opensourced our code in
github. !

1 Introduction

Language modeling is useful for pre-training de-
coders in Seq2Seq architectures, and custom archi-
tectures often proposed. Regularizing and Optimiz-
ing LSTM Language Models [3] introduce some
techniques that do not need modifying original
RNN model. This paper applies several regulariz-
ing and optimizing techniques, such as weight drop,
weight tying, variational dropout, random BPTT
length, AR and TAR, for increasing the model per-
formance. Furthermore, it propose new optimiza-
tion techniques(NT-AvSGD). LSTM model with
those techniques attained State-of-The-Art perfor-
mance for many tasks and become popular baseline
model for Language Model papers.

'https://github.com/soyoung97/awd-lstm-gru

Jaeyoung Hwang
20150824

Dongmin Seo
20150390

Nowadays, mobile is an important device for
users. Therefore, many companies try to use lan-
guage models on mobile devices. But ML models
for real production has space limitation. There-
fore, for making it lightweight and faster to train,
we provide a way to maintain the performance of
these neural architectures while substantially re-
ducing the parameter cost. The paper achieves that
goal by introducing regularizing and optimization
techniques without additional learning parameters.
GRU is also a RNN model that has fewer parame-
ters than LSTM model although they show similar
performance. Therefore, we thought GRU model
will be more suitable for this purpose than LSTM
model.

In this project, we experiment with those regu-
larizing and optimizing techniques on GRU and
bidirectional LSTM model.

2 Background

These are the regularizing and optimizing tech-
niques that were used in the original paper. In
addition, we introduce the details of RNN models
which we changed from LSTM model.

2.1 Weight Drop

We used DropConnect [4] on the recurrent hidden
to hidden weight matrices which does not require
any modifications to an RNNs formulation. As the
dropout operation is applied once to the weight
matrices, before the forward and backward pass.

2.2 Embedding and Variational dropout

Embedding Dropout reduces total parameter size.
This is used on the embedding matrix at a word
level. Variational Dropout overcomes the problem
of disrupting RNNs ability to retain long term de-
pendencies by applying same dropout masks over
multiple time steps.

2.3 NT-AvSGD

SGD is among the most popular methods for train-
ing deep learning models.

1
min 7 2 £i(w)

Averaged SGD (AvSGD) has been analyzed in
depth theoretically and many surprising results
have been shown. Instead of returning the last
iterate as the solution, returns K%TH ZfiT w;,
where K is the total number of iterations and T | K
is a user-specified averaging trigger.

NT-AvSGD has similar as AvSGD but it has well
defined guideline to decide T and K.

Algorithm 1 Non-monotonically Triggered ASGD
(NTASGD)
Inputs: Initial point wy, learning rate r, logging
interval L, non-monotone interval n.
1: Initialize k < 0,¢ < 0, T < 0, logs < ||
2: while stopping criterion not met do
: Compute stochastic gradient v/ f (w;,) and
take SGD step (1).
4: if mod(k, L) = 0 and T' = 0 then Com-
pute validation perplexity v

5: if t > n and

6: v > mingegy_y, ...y logs[l] then
7: SetT + k

8: end if

9: Append v to logs

10: t+—t+1

11: end if

12: end whileK

13: return k_iffTJ:fi

2.4 Random BPTT length

When use same window size at every epochs, any
element divisible by window size will never have
any elements to backprop into, no matter how many
times you may traverse the data set. To prevent
such inefficient data usage, we randomly select the
window size for the forward and backward pass.

2.5 Weight tying

Weight tying is about sharing weights between
input-to-embedding layer and output-to-softmax
layer. By doing this, we can use only one matrix in-
stead of using two matrices. Therefore, it prevents
learning one-to-one correspondence between input
and output.

2.6 AR and TAR

L2 decay can be used on the individual unit ac-
tivations and on the difference in outputs of an
RNN at different time steps. These strategies la-
beled as Activation Regularization (AR) and Tem-
poral Activation Regularization (TAR) respectively.
AR is defined as aLs(m ® hy) where m is the
dropout mask, La(-) = ||-||5, k¢ is the output of
the RNN at timestep ¢, and a is a scaling coeffi-
cient. Using the notation from AR, TAR is defined
as fLa(hy — hyy1) where 3 is a scaling coefficient.

2.7 GRU

GRU is gating mechanism in recurrent neural net-
works. Although GRU’s performance on many
tasks was found to be similar to that of LSTM, it
has fewer parameters than LSTM, as it lacks an
output gate.

2.8 Bidirectional LSTM

Bidirectional LSTM(biLSTM) connects two hid-
den layers of opposite directions to the same output.
The output layer can get information from back-
wards and forward states simultaneously. These
were introduced to increase the amount of input
information available to the network.

3 Method

First, we check if we successfully replicated the
original baseline model. Then, to see if these reg-
ularizing and optimizing techniques are working
well on the modified models, we experimented with
the following changed RNN model. The baseline of
our experiment is LSTM with 3 layers applied regu-
larization and optimization techniques. Split cross
entropy is used for the loss function, and perplex-
ity is calculated by the exponential of loss. First
to see if we implemented the original code well,
we tested on making the "LSTM without dropout”
model. Then, we increased different number of
layers of GRU to see which performs better. Lastly,
we implemented the bidirectional LSTM model.
The following modeles are listed below.

o LSTM without dropout
e GRU with more layers(5)
o GRU with same number of layers(3)

e Bidirectional LSTM with same number of
node

4 Training

We use same dropout rate used in embedding ma-
trix, hidden to hidden layers, RNN layers in the
network and each embeddings were initialized ran-
domly. Dropout rate for input embedding layers
and applied layers is 0.4, removed word rate from
embedding layer is 0.1, for RNN layers is 0.25. Net-
work is trained using Penn TreeBank and WikiText-
2 on NVIDIA GTX 1080 ti GPU.

We train our model through two separated stages,
initial training and fine-tuning. We use weight ty-
ing, weight dropout for hidden to hidden matrix
and dropout for input embedding layer and RNN
layers first. After proper learning is done, we ap-
ply AR and TAR, use random back propagation
through time length and use non-monotonic trigger
for optimization.

S Result
Type of Model Pen TreeBank Wiki Text 2
LSTM 24M,48s 33M 91s
GRU 19M,41s 28M,76s
GRU-5 layers 35M,76s -
biLSTM 18M,58s 28M,965s

Table 1: Total number of parameters and training time
per one epoch according to dataset and model

As we planned to do, the parameter size of
each model were different. Trivially, GRU with
3 layer has less parameters compared to the base-
line LSTM. Bidirectional LSTM has same number
of node as LSTM, but has less parameters, because
connection layers between decoder and encoder of
biLSTM doesn’t need much parameters than hid-
den to hidden layers of LSTM, but more execution
time is needed for each epoch, so learning time
is longer than baseline LSTM. GRU-5 layers had
the biggest number of parameters, showing that in-
creasing the number of layers doesn’t always help
at increasing the model performance. The figure
of training and validation loss over epoch of each
model is listed on the Appendix(last page) of the
report. Figure 1 shows that regularization methods
used actually works - meaning that we success-
fully replicated the baseline LSTM model. LSTM
without regularization techniques decreases train-
ing loss rapidly, and the validation loss is increased,
meaning that it overfits to the training data. Since
there is less generalization ability, it adapts to the
data set too quickly. As a result, validation loss

change verifies LSTM without regularization is not
well trained.

The performance of GRU were lower than
LSTM over both datasets. Compared with LSTM,
average time to run over one epoch training time is
faster for GRU with same number of layers. During
the poster session we discussed that if we fine-tune
the hyperparameters, the model performance would
increase. After the poster session, we changed
some hyper parameters, such as dropout rate for
embedding matrix and RNN layers, but there is no
big difference compared to the gap of LSTM loss.
To testify that the cause of the problem is because
of GRU problem, we train GRU again with more
layers. As the figure 3 shows, GRU with more pa-
rameters than original LSTM perform worse than
LSTM. In our conclusion, because of architectural
reason, GRU has short memory propagation length
and fewer transferred information between layers
than LSTM, therefore it is not proper to language
modeling task.

As we can see in the result figures, GRU has per-
turbation at inital training, because few parameters
of GRU get low impact of gradient vanishing, so
parameters are variable than LSTM. Training loss
of GRU in figure 2 increase after loss converge to
some stable state, since learning rate is relatively
too big to settle minima of loss function. It is need
to train again with lower learning rate later.

For Bidirectional LSTMs, they showed perplex-
ity scores of around 1. Bidirectional LSTMs
showed unbelievable performance on our language
modeling task. Although it is said that bidirectional
models have great performance over other ones,
compared to the proposed LSTM model which has
single model perplexity of 60, having a perplexity
of nearly 1 or less was somewhat strange. Since the
target for language modeling is just input sequence
offset by one, the network cheats by using the other
direction of the LSTM to know what word is com-
ing next, thus it predicts perfectly what the next
word in the sequence will be.

6 Further works

To solve the problem of biLSTM evaluation, the
tasks should be modified. We should use other
tasks rather than next word prediction. For ex-
ample, generation tasks, translation or classifica-
tion, or training a language model using masked
sequence by giving a task to predict the masked
word(BERT) should be used. Furthermore, actually

single-model perplexity can be used, if we apply
biLSTM only on encoder in encoder-decoder struc-
ture. Also, more modifications on the model can
be done to enhance the performance of Language
Modeling such as attention-based language models
[1] and attentive language models [2]. We tried to
implement those two modifications - changing the
task of Language Modeling and evaluating based
on the task and modifying to make attentive Lan-
guage Modeling, but we had problems integrating
the ideas into the original awd-lstm code. There-
fore we could not finish until we see the results.

7 Conclusion

In our project, we discuss the ideas of the paper,
”Regularizing and Optimizing LSTM Language
Models”, and propose modifications to the original
model by changing the model structure. We first
successfully replicated the original paper. Then, we
changed the model from LSTM to GRU, and from
LSTM to biLSTM, and compared the time and
perplexity results. As a result, we found out that
although the performance of GRUs were lower than
LSTMs for Language modeling, they end up having
less parameter size and took less training time. We
also learned that training time of biLSTMs were
longer than the baseline model and that we cannot
evaluate the single-model perplexity of biLSTMs
because of the structure of biLSTMs.

8 Appendix

Next page shows training loss and validation loss
over epoch of each model.

References

[1] Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. Coherent dialogue with attention-based lan-
guage models. CoRR, abs/1611.06997, 2016.

[2] Giancarlo Salton, Robert Ross, and John Kelle-
her. Attentive language models. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 441-450, Taipei, Taiwan, November 2017.
Asian Federation of Natural Language Processing.

[3] Richard Socher Stephen Merity, Nitish
Shirish Keskar. Regularizing and optimizing
Istm language models. Journal of the Association
for Computing Machinery, arXiv:1708.02182, 2017.

[4] Zeiler M. Zhang S. LeCun Y Wan, L. and R. Fergus.
Regularization of neural networks using dropcon-
nect. In Proceedings of the 30th international con-
ference on machine learning, 28:1058-1066, 2013.

—— awd-Istm on Penn Treebank

awd-Istm without dropout on Penn Treebank
—— awd-Istm on WikiText-2
—— awd-Istm without dropout on WikiText-2

epoch

Figure 1: Train loss over PTB and WikiText-2 with baseline LSTM and baseline LSTM without dropout.

65 —— awd-Istm on Penn Treebank

awd-Istm without dropout on Penn Treebank
—— awd-Istm on WikiText-2
—— awd-Istm without dropout on WikiText-2

4.0

epoch

Figure 2: Validation loss over PTB and WikiText-2 with baseline LSTM and baseline LSTM without dropout.

—— awd-gru on WikiText-2
30 —— awd-Istm on WikiText-2

°
S
8
S
8
w
8
B

400 500 600 700 800

epoch

Figure 3: Train loss over WikiText-2 with GRU 3 layers and baseline LSTM.

0 —— awd-gru on WikiText-2
—— awd-Istm on WikiText-2

0 100 200 300 400 500 600 700

epoch

Figure 4: Validation loss over WikiText-2 with GRU 3 layers and baseline LSTM.

—— awd-gru on Penn Treebank
awd-gru-5layers on Penn Treebank
—— awd-Istm on Penn Treebank

- Y I o

200 400 600 800
epoch

Figure 5: Train loss over Penn Treebank with GRU 3 layers and GRU 5 layers.

—— awd-gru on Penn Treebank
awd-gru-5layers on Penn Treebank
—— awd-Istm on Penn Treebank

200 400 600 800

epoch

Figure 6: Validation loss over Penn Treebank with GRU 3 layers and GRU 5 layers.

loss

—— awd-Istm on Penn Treebank
awd-bilstm on Penn Treebank

—— awd-Istm on WikiText-2

—— awd-bilstm on WikiText-2

6
epoch

Figure 7: Train loss over Penn Treebank and WikiText-2 with biLSTM and baseline LSTM.

loss

—— awd-Istm on Penn Treebank
awd-bilstm on Penn Treebank

—— awd-Istm on WikiText-2

—— awd-bilstm on WikiText-2

6
epoch

Figure 8: Train loss over Penn Treebank and WikiText-2 with biLSTM and baseline LSTM.

