
1



Overview

We introduce ListT5, FiD with tournament sort, that is..

1. Computationally efficient.
a. Faster than pairwise or LLM + sliding window based listwise methods
b. comparable with pointwise methods

2. Robust to positional bias.
a. Overcomes the lost-in-the middle problem by FiD, with each passage encoded with identical 

positional encoding.
3. Shows great zero-shot performance.

a. superior than any listwise, pointwise, pairwise models on BEIR benchmark, 
for T5-base and T5-3B with relatively small size.

2



Background

- Models still struggle on zero-shot retrieval
- Listwise reranking models are shown to be effective on zero-shot 

retrieval, but previous listwise reranking models had limitations
- small-sized models only implement pairwise reranking with 

impractical efficiency (e.g., DuoT5)
- large-sized models suffer from the lost-in-the middle problem due to 

its long input length.

3



Pointwise v.s. Listwise Reranking

- Listwise rerankers can condition on 
and compare multiple passages to 
calibrate the relevance scores better, 
thus reducing the inaccuracy of 
predictions arising from domain shift.*

4*Xian et al., Learning List-Level Domain-Invariant Representations for Ranking
monoT5 and RankT5 image borrowed from: Zhuang et al, RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses

(pointwise rerankers)



- Listwise Baseline models: DuoT5 for small models

5

DuoT5: better performance than pointwise models, 
but n^2 time complexity!

Listwise reranking models: Baselines

Pradeep et al., The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models



- Listwise Baseline models: RankVicuna, RankZephyr, 
RankGPT for Large Language Models

6

Recently, methods to do listwise reranking 
with LLMs has been investigated

Listwise reranking models: Baselines

Sun et al., Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking 
Agent

But, inefficiency due to large parametric size of 
the model & lost-in-the middle problem 
occurs!



7

- Crucial problem in Listwise reranking with LLMs: Lost in the middle problem

Liu et al., Lost in the Middle: How Language Models Use Long Contexts

Listwise reranking models: Baselines

Tang et al., Found in the Middle: Permutation Self-Consistency Improves Listwise Reranking in Language Models



-> use FiD (Fusion-in-Decoder) architecture that outputs sorted passage index, 
and use (hierarchical) tournament sort to cache already-computed passages!

8

- listwise reranking is effective for zero-shot retrieval
- How to better utilize the autoregressive generation ability of reranking models?
- Small models can’t see long context, pairwise models are impractical, efficiency hurts with lengthy inputs
- listwise reranking with LLMs has the lost-in-the-middle problem
- How can we train the model to efficiently see multiple passages at once and do listwise ranking, while being 

fairly efficient and exhibit less positional bias?

Listwise reranking: Solutions

izacard et al., Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering



- Fusion-in-Decoder, that given k (=5) 
contexts, output sorted index, with 
relevant index coming at the last.

- Each passage is processed by the 
encoder with identical positional 
encodings, and the model identifies each 
passage with index number: CANNOT 
exploit positional bias.

9

Proposed Method: ListT5 architecture



Making the train dataset

- Source: MSMARCO, with only positive/negative labels
- Labeling ordering between negatives

- Used bi-encoder (coco-dr large: 340M, GTR-large for ablation), selected 
top-1000 out of 8.8M corpus, random selection of 4 negatives

- labeled negative scoring by the dot product scores of the bi-encoder

10
*training data open-sourced upon request at 
https://huggingface.co/datasets/Soyoung97/ListT5-train-data



11

Sorting method: Tournament sort 
- 5-ary tournament tree, with output caching
- group passages to 5, ranks them hierarchically like tournament
- getting next top-1 only requires computing path for changed elements

winners

winners of 
winners

final winner



Tournament sort v.s. Sliding window

12



13

winners

winners of 
winners

final winner



Zero-shot performance - pointwise baseline models

14



Zero-shot performance - listwise baseline models

15



Efficiency

16



Positional Invariance

17

v.s.



18

Positional Invariance - better than RankGPT4!



19

Positional Invariance - robustness to shuffling 
candidate passages



Summary

We introduce ListT5 with tournament
 sort, that is..

1. Computationally efficient.
a. Lower than pairwise or LLM + sliding window based listwise methods
b. comparable with pointwise methods

2. Robust to positional bias.
a. Overcomes the lost-in-the middle problem by FiD, with each passage encoded with identical 

positional encoding.
3. Shows great zero-shot performance.

a. superior than any listwise, pointwise, 
pairwise models on BEIR benchmark, 
for T5-base and T5-3B with relatively
small size 20

Please contact:
soyoung.yoon@snu.ac.kr
for any questions!

mailto:soyoung.yoon@snu.ac.kr


[Ablation] Model variants

21

- Most effective to generate most relevant index 
at the LAST!

- Sequential generation like reasoning chain!



Appendix - design choice

22



Appendix - LLM 
consistency

23



Appendix - 
Training Dataset

24



Appendix : sliding window v.s. 
tournament sort

25



Appendix : sliding window v.s. 
tournament sort

26



Appendix: applying tournament sort on RankGPT

27



Appendix: Train Dataset Example

format: [Query: did edison invent the car battery? Index: 1, Context: … ]
3: Mercedes-Benz engine
1: first automobile
4: Conrad Hubert’s battery company invented flashlight.
2: Edison didn’t invent phonograph.
5: Edison’s car battery improvement didn’t come out as expected.
output: 3 1 4 2 5 28


