
ListT5: Listwise Reranking with Fusion-in-
Decoder Improves Zero-shot Retrieval
Soyoung Yoon1*, Eunbi Choi2, Jiyeon Kim3, Hyeongu Yun2, Yireun Kim2, Seung-won Hwang1†

1Seoul National University 2LG AI Research 3KAIST AI
†Corresponding Author *Work done during an internship at LG AI Research

Overview - Neural-based Information Retrieval systems still struggle on zero-shot retrieval compared with statistical retrievers (e.g., BM25)
- Listwise reranking models are shown to be effective on zero-shot retrieval, but previous listwise reranking had limitations: small-sized models only

implement pairwise reranking with impractical efficiency, and large-sized models suffer from the lost-in-the middle problem due to its long input length.
- We present ListT5 that overcomes the aforementioned limitations with the following advantages:

- Pointwise (MonoT5, RankT5): Individually assigns definite relevance scores for each documents
- Listwise (ListT5, RankGPT, RankZephyr..): Given multiple documents as input, sort documents and compute relative ordering

between them

Paper Code

Background: Pointwise v.s. Listwise Reranking

Zero-shot performance

Listwise reranking with
LLMs (RankGPT,
RankZephyr…)

Proposed Method: ListT5 architecture

FiD architecture

- Fusion-in-Decoder that given k (=5) contexts, output sorted index, with relevant
index coming at the last.

- Training: MS MARCO train set, label negatives by Bi-encoder (COCO-DR/GTR)

Tournament Sort (v.s. sliding window)

- Sliding window: since window of size m can only “cache” up to m passages, full reranking top - k becomes inaccurate when k > m, and we need to run the whole iteration multiple times.
- Tournament sort: once the tree is constructed, additional iteration only requires computing a single path from leaf to root - most nodes can be cached & re-used for k iterations.

- Comparison with listwise LLMs & pairwise rerankers (DuoT5)

- Comparison with pointwise rerankers with BM25 / COCO-DR as first-stage retrievers

- NDCG@10 drop before & after shuffling
the initial top-100 ordering of BM25

- Agreement ratio & Std w.r.t. position of positive passage index

Positional Invariance Efficiency Ablations

- Relevant last was the
most effective.

- Tournament sort was more
efficient than sliding window.

- ListT5-base and ListT5-3B was superior than pointwise, pairwise, and
listwise counterparts on the average NDCG@10 on full BEIR benchmark.

- ListT5 was more robust to initial ordering change
or position change of positive passage.

1. Computational Efficiency: Efficient than pairwise methods & listwise methods w/ LLMs, comparable to pointwise methods, applicable to small models (e.g., T5-base).
2. Robustness to Positional Bias: Effectively overcomes the lost-in-the middle problem, better than RankGPT-4, by the nature of Fusion-in-Decoder.
3. Zero-shot performance: Shows superior performance than pointwise(MonoT5, RankT5) and listwise (RankZephyr, RankVicuna, RankGPT3.5) counterparts.

- However, they exhibit the lost in the middle
problem, positionally biased to passages
presented in the first and last parts of the
listwise input.

- How can we train the model to efficiently see
multiple passages at once, while being fairly
efficient and exhibit less positional bias?  
-> Fusion-In Decoder with tournament sort!

- Each passage is processed by the encoder
with identical positional encodings by FiD  
- so, ListT5 cannot exploit positional bias.

