

RoToR: Towards More Reliable Responses for Order-Invariant Inputs

Soyoung Yoon^{1*} Dongha Ahn¹² Youngwon Lee¹ Minkyu Jung² HyungJoo Jang² Seung-won Hwang^{1†}

¹Seoul National University ²Channel Corporation {soyoung.yoon, seungwonh}@snu.ac.kr

Overview

We introduce **RoToR**: which ensures robustness to the order of input contexts by modifying attention. This is done in a zero-shot manner, by (1) Global Sorting + Circular Position IDs and (2) Selective Routing for Mixed Inputs, which achieve SOTA robustness on 3 benchmarks and lower FLOPs v.s. Baselines (PINE)

- 1. Motivation: positional bias for listwise inputs
- 2. Limitations of prior works
- 3. Contributions of RoToR with Selective Routing
- 4. Experimental results

Motivation: Positional Bias for listwise inputs

- Lost-in-the-Middle (RAG)
- First-choice bias (75%) in LLM-as-a-judge
- MMLU rank shifts by 8 with shuffle
- Need neutral handling for sets, tables, multiple-choice questions

Prior works to enforce invariance for listwise inputs

- Self-consistency (swap A/B in LLM-as-a-judge, ...) -> Needs N! forwards or approximations
- Attention alteration methods
 - PCW, Set-based Prompting
 - PINE

Invariant Model

Invariant Model

But, the position of query tokens should be placed last to follow the causal nature!

Invariant Model

Example: enforcing invariance via altering self-attention - Query token Last

But, the position of query tokens should be placed last to follow the causal nature!

Example: enforcing invariance via altering self-attention - Query token Last

Also, the order of segments should not depend on the initial ordering (apple -> orange -> banana) of segments!

How? compute pairwise attention (relevance) among segments without positional ID

Problem: need to re-calculate pairwise relevance labels for every query tokens

Problem: need to re-calculate pairwise relevance labels for every query tokens

Methodology: Order-invariant causal LMs

- PINE: Bidirectional processing with Q-K similarity
 - Has to obtain the same attention representation, regardless of initial ordering of segments
 - Places query IDs last, sorts other segments in a order-invariant way

Self-attention patterns (x = query, y = key) across order-invariant models

Limitations of prior works

-> Zero-shot order-invariant LMs have been proposed, but had limitations in two aspects:

1. Training and inference distribution mismatch

- PCW, Set-based prompting: No cross-segment context
- PINE: per-query sort -> O(O(n²) + instability)
- Frequent ID changes cause **OOD behavior** -> drops its ability

- Computationally expensive (per-query KV attention compute)
- Numerical Instability (arising from attention assignment)

Limitations of prior works

-> Zero-shot order-invariant LMs have been proposed, but had limitations in two aspects:

2. Fail to extend to real-life scenarios (order-invariant + order-sensitive)

- Does not consider hybrid cases (e.g., MMLU)
- Cannot mix order-sensitive segments

Methodology: Order-invariant causal LMs

- Solution: RoToR

- Keep the bidirectional structure, but alter the position assignment in a simple and stable way!
- Define a single global ordering + circular arrangement

Circular arrangement: Reuse global ordering by allocating them in a circular way!

- shift global orders so that query token gets last, but relative ordering of others is maintained

RoToR, global ordering + circular arrangement

How? simple **Hierarchical Lexical Sorting*** of segments depending on their **tokenized IDs**

Apple	[16, 1]	16 > 12								
Orange	[12, 8]	8 > 5 > 3								
Grape	[12, 5, 2]	Global order:	Apple	>	Orange	>	Grape	>	Banana	
Banana	[12, 3]				also experir		•		g methods,	such

as reranking-based and frequency-based

²²

RoToR - Key Contributions

1. Training and inference distribution mismatch

- Stable, order-invariant solution (RoToR)
- Query-agnostic global ordering with minimal positional ID modifications

2. Fail to extend to hybrid cases

- Selective Routing, which switches between original / invariant LMs based on confidence

RoToR v.s. PINE (Schematic)

PINE: query-dependent grid, RoToR: fixed order, rotate per query

-> Stable IDs, zero collisions, less computation

PINE

RoToR

RoToR v.s. PINE (Schematic)

PINE: query-dependent grid, RoToR: fixed order, rotate per query

-> Stable IDs, zero collisions, less computation

Selective Routing: extend to hybrid cases (e.g., MMLU)

- Compute confidence of Original & RoToR outputs
- Choose higher p + α (α =0.2)

Experimental Setup

- Benchmarks:

- Lost-in-the-Middle (LitM)
- Knowledge Graph QA (KGQA): Mintaka
- MMLU: selective routing cases
- LongBench: long context scenarios (Appendix)

- Model backbones:

- Llama-3.1-8B/70B
- Qwen-1.5-4/7/72B-Chat
- **Metrics:** best_subspan_em (LitM), EM, F1, Acc. (KGQA), Acc. (MMLU)
- Methods: Original (order-sensitive), PCW, Set-based prompting, PINE, RoToR

(a) Overne	ad I LOI 3, I clative to orig	illul illout	,1				
Llama-3.1- 8B-Instruct	$\begin{array}{l} \text{MMLU, } N=4 \\ \text{LitM, } N=10 \\ \text{LitM, } N=30 \end{array}$	0.59× 7.07× 22.43×	0.55× 4.81× 15.05×	7.6% 31.9% 32.9%			
Llama-3.1- 70B-Instruct	$\begin{array}{l} {\rm KGQA}, N=30 \\ {\rm KGQA}, N=50 \end{array}$	1.27× 1.82×	0.94× 1.29×	26.0% 29.0%			
Qwen1.5- 72B-Chat	$\begin{array}{l} {\rm KGQA,}N=30\\ {\rm KGQA,}N=50 \end{array}$	0.45× 0.58×	0.01× 0.03×	98.0% 94.8%			
(b) End-to-end latency (s)							
			,	22.9% 32.6%			
Llama-3.1-	MMLU, $N=4$	7,371	6,608	10.4% 23.1%			
8B-Instruct	LitM, $N = 30$	41,664	23,569	43.4%			
(c) Perplexity & Collision rate, (on LitM)							
Llama-3.1- 8B-Instruct	Perplexity $(N = 20)$ Collision rate $(N = 30)$	6.91 42.3%	6.65 0 (None)				
	Llama-3.1- 8B-Instruct Llama-3.1- 70B-Instruct Qwen1.5- 72B-Chat (b) End-to- Llama-3.1- 70B-Instruct Llama-3.1- 8B-Instruct (c) Perplex Llama-3.1-	Llama-3.1- 8B-Instruct MMLU, $N = 4$ LitM, $N = 10$ LitM, $N = 30$ Llama-3.1- KGQA, $N = 30$ Qwen1.5- KGQA, $N = 30$ 72B-Chat KGQA, $N = 50$ (b) End-to-end latency (s) Llama-3.1- T0B-Instruct LitM, $N = 10$ LitM, $N = 20$ MMLU, $N = 4$ LitM, $N = 10$ LitM, $N = 10$ LitM, $N = 30$ (c) Perplexity & Collision rate, (on Llama-3.1- Perplexity ($N = 20$)	Llama-3.1- BB-Instruct $\begin{array}{c ccccc} & MMLU, N = 4 & 0.59 \times \\ & LitM, N = 10 & 7.07 \times \\ & LitM, N = 30 & 22.43 \times \\ \\ Llama-3.1- & KGQA, N = 30 & 1.27 \times \\ & 70B-Instruct & KGQA, N = 50 & 1.82 \times \\ \\ Qwen1.5- & KGQA, N = 30 & 0.45 \times \\ & 72B-Chat & KGQA, N = 50 & 0.58 \times \\ \hline \textbf{(b) End-to-end latency (s)} \\ \\ Llama-3.1- & LitM, N = 10 & 57,352 \\ & 70B-Instruct & LitM, N = 20 & 87,091 \\ \\ Llama-3.1- & MMLU, N = 4 & 7,371 \\ & LitM, N = 10 & 18,551 \\ & LitM, N = 30 & 41,664 \\ \hline \textbf{(c) Perplexity & Collision rate, (on LitM)} \\ \\ Llama-3.1- & Perplexity (N = 20) & 6.91 \\ \hline \end{array}$	Llama-3.1- LitM, $N = 10$ $7.07 \times 4.81 \times 22.43 \times 15.05 \times 22.43 \times 22.4$			

Model

Table 4: Unified efficiency comparison of RoToR vs. PINE, reporting (a) Additional FLOPs, (b) Latency, and (c) Perplexity & Collision rate. Columns list each metric for PINE and RoToR, and the relative reduction. Yellow rows separate sub-sections.

PINE

RoToR

Reduction

Benchmark

(a) Overhead FLOPs, relative to original model

Results: Lost-in-the Middle (LitM)

- Original Model fluctuates performance
- Ours (RoToR): maintains stable & higher performance than other order-invariant models

Results: Lost-in-the Middle (LitM)

- Full results

Total ndoc (segments)		10				20						30			
Gold idx at:	0	4	9	0	4	9	14	19	0	4	9	14	19	24	29
Llama-3.1-8B-Instruct															
Original	54.7	53.0	50.2	54.8	52.6	52.8	52.4	51.0	55.6	51.5	52.4	52.8	52.1	52.3	53.0
PCW	12.4	11.9	12.2	3.7	4.0	4.0	4.0	3.9	2.3	1.8	2.0	2.0	2.1	2.0	2.0
Set-Based Prompting	42.5	42.5	42.5	26.3	26.3	26.3	26.3	26.3	14.1	14.1	14.1	14.1	14.1	14.1	14.1
PINE	58.6	58.8	59.0	56.2	55.7	55.5	55.7	55.5	54.2	54.8	54.3	53.7	54.8	54.2	54.0
RoToR-lexical	61.4	61.6	61.6	61.4	59.8	59.6	59.6	59.8	59.2	59.5	59.4	59.1	59.0	59.3	59.1
RoToR-reversed lexical	61.6	61.8	61.8	58.9	59.3	58.8	58.6	58.7	57.9	58.2	57.9	57.4	57.9	57.6	57.5
RoToR-MonoT5	61.2	61.4	61.2	60.9	61.0	61.2	61.2	61.2	60.9	60.7	60.7	60.7	60.8	60.8	60.7
RoToR-Freq.	61.0	61.1	61.1	60.4	60.3	58.6	60.2	60.0	59.3	60.4	59.7	59.5	59.5	59.6	59.2
Qwen1.5-4B-Chat															
Original	61.3	54.8	53.1	59.5	49.1	47.9	45.9	48.3	56.8	45.6	44.9	44.6	45.3	43.5	48.3
PINE	57.2	57.4	57.0	48.6	48.2	48.2	48.1	48.9	46.4	45.9	46.7	46.6	46.4	46.4	46.3
RoToR	58.5	58.4	58.1	49.9	49.7	49.6	49.8	49.9	44.6	44.8	44.7	44.7	44.9	44.8	44.7
RoToR-MonoT5	58.9	58.5	58.7	52.2	52.1	52.1	52.2	52.6	50.6	50.7	50.5	50.6	50.5	50.6	50.4
RoToR-Freq.	56.7	56.9	56.9	51.9	51.5	51.8	51.6	52.4	46.8	46.7	46.7	46.4	47.0	46.8	46.6
Qwen1.5-7B-Chat															
Original	72.5	63.3	62.9	72.5	58.5	56.1	56.0	58.2	73.1	58.6	55.8	53.3	53.2	52.5	57.5
PINE	65.4	65.5	66.3	59.1	59.4	59.1	58.6	59.2	58.0	55.3	55.7	56.3	55.1	55.8	56.1
RoToR	68.6	68.7	68.6	62.6	62.9	62.7	63.0	62.7	57.0	57.3	59.7	57.4	57.3	62.8	57.0
RoToR-MonoT5	68.8	69.4	69.0	65.2	65.5	65.0	64.9	65.0	62.6	62.8	62.9	62.7	62.9	62.8	62.5
RoToR-Freq.	68.2	68.4	68.4	62.6	62.9	62.8	62.7	62.3	59.5	59.8	59.7	59.6	59.7	59.7	59.7

Results: KGQA

- Top-30 and Top-50 knowledge triples per query
- Test before / after shuffling segments to see robustness
- RoToR obtains lower stdev (better stability) + higher performance than PINE
- Trend persists for > 70B model variants

	Llama-3.1-8B-Instruct							Qwen1.5-4B-Chat						Q	wen1.5	-7B-Ch	at	
	N = 30				N = 50			N = 30			N = 50		N = 30		N = 50			
Method	Acc.	EM	F1	Acc.	EM	F1	Acc.	EM	F1	Acc.	EM	F1	Acc.	EM	F1	Acc.	EM	F1
Initial, no shuffli	ng of se	egment	s															
Original	50.2	44.0	51.9	50.0	44.0	51.7	30.7	27.9	34.9	31.6	28.6	35.8	31.5	27.8	35.4	31.7	28.0	35.7
PINE	51.5	45.0	52.6	51.6	45.1	52.6	31.6	28.7	35.6	31.6	28.8	35.3	32.3	28.8	36.4	32.0	28.5	35.9
RoToR	53.1	46.5	54.1	52.9	46.0	53.6	32.0	29.0	35.7	32.7	29.6	36.2	34.3	29.8	37.7	34.3	30.1	38.0
RoToR-MonoT5	51.6	45.0	52.5	52.4	45.4	52.8	32.3	29.1	36.2	32.3	29.3	35.9	32.9	28.4	36.3	32.9	28.9	36.6
RoToR-Freq.	52.6	46.1	53.7	53.1	46.4	53.7	32.3	29.2	36.0	32.3	29.2	35.9	33.7	29.5	37.2	33.5	29.5	37.2
After shuffling se	gments	s, avera	aged ov	er 3 se	eds													
Original	49.5	43.3	51.0	49.7	43.5	51.0	30.1	27.5	34.7	30.3	27.6	35.0	31.4	27.3	35.0	31.6	27.9	35.5
\hookrightarrow stdev. (\pm)	0.07	0.14	0.17	0.34	0.28	0.46	0.41	0.34	0.43	0.26	0.24	0.35	0.26	0.28	0.29	0.40	0.56	0.42
PINE	51.8	45.2	52.8	51.8	45.3	52.7	31.5	28.7	35.6	31.5	28.7	35.3	32.3	28.8	35.7	31.7	28.2	35.7
\hookrightarrow stdev. (\pm)	0.05	0.07	0.16	0.15	0.16	0.19	0.20	0.18	0.13	0.17	0.20	0.21	0.17	0.20	0.13	0.18	0.16	0.14
RoToR	52.8	46.2	53.8	52.7	45.9	53.5	31.8	28.8	35.5	32.5	29.6	36.1	34.2	29.9	37.7	34.2	30.1	38.0
\hookrightarrow stdev. (\pm)	0.05	0.05	0.02	0.05	0.09	0.04	0.05	0.02	0.09	0.11	0.06	0.09	0.09	0.07	0.06	0.06	0.05	0.04
RoToR-MonoT5	51.6	45.0	52.6	52.2	45.2	52.8	32.4	29.2	36.3	32.3	29.4	35.9	33.0	28.8	36.5	32.8	28.8	36.5
\hookrightarrow stdev. (\pm)	0.12	0.06	0.10	0.16	0.18	0.18	0.04	0.02	0.13	0.16	0.13	0.07	0.12	0.09	0.07	0.16	0.09	0.07
RoToR-Freq.	52.5	45.9	53.5	53.1	46.4	53.7	32.3	29.3	36.0	32.4	29.3	36.1	33.8	29.6	37.4	33.7	29.6	37.4
\hookrightarrow stdev. (\pm)	0.10	0.15	0.11	0.02	0.07	0.03	0.13	0.16	0.09	0.09	0.04	0.06	0.04	0.00	0.09	0.04	0.16	0.22

Results: MMLU (selective routing)

	Llan	na-3.1-8	B-Instruct	Qv	wen1.5-	4B-Chat	Qwen1.5-7B-Chat			
Method	Init.	Rev.	Avg.	Init.	Rev.	Avg.	Init.	Rev.	Avg.	
Orig.	68.3	64.8	65.5 ± 1.0	53.6	51.9	52.6 ± 0.6	60.1	56.6	58.6 ± 0.9	
PCW	57.0	55.1	56.1 ± 1.1		-		_			
Set-Based Prompting	31.1	33.0	31.6 ± 0.8		-		_			
PINE	64.8	63.3	63.6 ± 0.7	50.5	49.3	49.4 ± 0.5	57.0	54.4	55.8 ± 0.9	
RoToR	63.2	62.6	62.8 ± 0.7	49.6	47.7	48.3 ± 0.7	56.5	55.8	56.2 ± 0.6	
\hookrightarrow + S.R.	68.5	65.1	65.7 ± 0.9	53.7	51.8	$\textbf{52.6} \pm \textbf{0.6}$	60.1	57.4	$\textbf{58.8} \pm \textbf{0.7}$	
RoToR - MonoT5	64.2	62.9	63.5 ± 0.5	49.7	47.6	48.7 ± 0.7	56.2	54.4	55.5 ± 0.7	
\hookrightarrow + S.R.	68.4	65.2	65.8 ± 0.9	53.8	51.9	$\textbf{52.6} \pm \textbf{0.6}$	60.1	57.3	58.7 ± 0.8	
RoToR - Freq.	64.3	63.6	63.8 ± 0.6	49.9	47.6	48.7 ± 0.5	56.4	54.7	55.7 ± 0.7	
\hookrightarrow + S.R.	68.5	65.3	$\textbf{65.8} \pm \textbf{0.8}$	53.7	52.3	$\textbf{52.6} \pm \textbf{0.6}$	60.0	57.3	58.6 ± 0.8	
RoToR + S.R. (Oracle)	75.0	71.9	72.7 ± 1.0	61.8	60.1	61.1 ± 1.0	68.1	66.2	67.2 ± 0.7	

- Order-invariant models fail (than the original model) with single use (expected)
- Selective Routing shows improved performance and stability across input re-orderings
- High S.R. (Oracle) value indicates high potential for further accuracy gains by optimizing choices on routing methods

Summary

We propose RoToR: a simple, effective order-invariant LM that...

- Can be applied to **any** zero-shot decoder-only model (with RoPE)
- Global sort + circular IDs mitigate positional bias
- Selective Routing enables practical use
- Paper: https://arxiv.org/pdf/2502.08662
- Code: github.com/soyoung97/RoToR

Code

Paper

Thank you!

Appendix

Appendix: computational overhead

PINE requires two additional operations: (1) computing attention scores without rotary position embeddings $(\mathcal{O}(n^2d))$ and (2) sorting k segments for each query token $(\mathcal{O}(nk\log k))$, totaling $\mathcal{O}(n^2d + nk\log k)$ (Wang et al., 2024)⁴.

our lexicographical sorting requires only a single global sort of k segments $(\mathcal{O}(k \log k))$, each with length $\mathcal{O}(n)$, achieving $\mathcal{O}(nk \log k)$ and eliminating the expensive $\mathcal{O}(n^2d)$ term entirely. This can be further optimized to $\mathcal{O}(nk)$ using radix sort.⁵

Appendix: Example Input/Output

lost in the middle

Prefix:

clbegin_of_textl><lstart_header_idl>systemlend_header_idl>

You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.leot_idl leot_idl <a href="le

Write a high-quality answer for the given question using only the provided search results (some of which might be irrelevant).

Parallel texts:

Document [1](Title: List of Nobel laureates in Physics) The first ...

••

Document [10] (Title: Nobel Prize in Chemistry) on December 10, the ...

Suffix:

Question: who got the first nobel prize in physics<leot_idl><lstart_header_idl>assistant <lend_header_idl>

Figure 7: Example input for the lost in the middle dataset.

Appendix: Example Input/Output

Mintaka Prefix: clbegin_of_textl><lstart_header_idl>system<lend_header_idl> Below are the facts in the form of the triple meaningful to answer the question. Answer the given question in a JSON format, such as "Answer": "xxx". Only output the JSON, do NOT say any word or explain. <leot idl><lstart header idl>user<lend header idl> Parallel texts: (Super Bowl XLII, winner, New York Giants) (Super Bowl XLII, participating team, New York Giants) (Super Bowl XLII, point in time, time: +2008-02-03) (Super Bowl XLII, followed by, Super Bowl XLIII) (Super Bowl XLII, location, State Farm Stadium) (Super Bowl XLII, sport, American football) (Super Bowl XLII, instance of, Super Bowl) Suffix: Question: which team did the super bowl xlii mvp play for?, Answer: <|eot_id|><|start_header_id|> assistant <lend_header_idl> Gold Answer(s): ('NYG', 'Giants', 'NY Giants', 'New York Giants') **Example generated output:** {"Answer": "New York Giants"} (Parsed to: New York Giants)

Figure 10: Example input for the Mintaka dataset.

Appendix: Example Input/Output

MMLU

Prefix:

The following are multiple choice questions (with answers) about moral disputes.

Norcross agrees that if a being is incapable of moral reasoning, at even the most basic level, then it cannot be

Parallel texts:

- A. a being of value.
- B. an object of moral sympathy.
- C. a moral agent.
- D. a moral patient.

Suffix:

Answer:

Figure 11: Example input for the MMLU benchmark.

Appendix: LongBench-2WikiMultiHopQA

		Llan	na 3.1-8	BB-Ins	Qwen 1.5-7B-Chat					
Order	Method	0–4k	4–8k	8k+	Total	0–4k	4–8k	8k+	Total	
	Count	25	131	144	300	23	121	156	300	
Initial (e.g., 1,2,3,4,5)	Orig. PINE RoToR	48.3 51.0 59.0	56.8 47.6 52.7	34.0 - 41.8	45.1 - 48.0	65.6 70.2 75.7	47.9 45.1 47.8	26.7 - 31.0	38.2 - 41.2	
Reversed (e.g., 5,4,3,2,1)	Orig. PINE RoToR	57.0 43.0 59.0	51.5 49.8 52.0	39.0 - 41.0	46.0 - 47.3	53.4 64.1 72.8	43.3 48.9 47.6	34.2 - 30.8	39.3 - 40.8	
Center flip (e.g., 3,2,1,5,4)	Orig. PINE RoToR	47.0 46.3 59.0	47.7 49.2 52.5	35.6 - 41.5	41.8 - 47.8	61.0 70.2 77.1	40.6 43.5 47.3	32.7 - 30.9	38.1 - 41.0	

Table 9: F1 scores (%) on LONGBENCH-2WikiMultihopQA with \sim 10k-token contexts. "Count" is the number of examples per length bucket; "-" denotes out-of-memory.

Appendix: Selective Routing ratio

	Llan	na-3.1-	8B-Instr.	Qw	en1.5-	4B-Chat	Qwen1.5-7B-Chat			
Sorting	Init. Rev. Avg.		Init.	Rev.	Avg.	Init.	Rev.	Avg.		
Lexical	7.0	8.5	7.3 ± 0.8	5.9	6.2	6.2 ± 0.4	10.3	10.6	9.9 ± 0.6	
MonoT5	6.9	7.6	$6.7 \!\pm\! 1.5$	8.0	12.5	$9.8 {\pm} 2.1$	10.7	10.9	10.7 ± 0.7	
Freq.	6.4	6.7	6.9 ± 0.5	8.5	10.9	9.4 ± 1.6	10.7	11.1	11.1 ± 0.8	

Table 11: Selection ratio (%) of the RoToR variant under SR. Higher values indicate more frequent routing to RoToR.