


Overview

We introduce RoToR: which ensures robustness to the order of input contexts by 
modifying attention. This is done in a zero-shot manner, by (1) Global Sorting + 
Circular Position IDs and (2) Selective Routing for Mixed Inputs, which achieve 
SOTA robustness on 3 benchmarks and lower FLOPs v.s. Baselines (PINE)

1. Motivation: positional bias for listwise inputs

2. Limitations of prior works

3. Contributions of RoToR with Selective Routing

4. Experimental results
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Motivation: Positional Bias for listwise inputs

- Lost‑in‑the‑Middle (RAG)
- First‑choice bias (75%) in LLM‑as-a-judge
- MMLU rank shifts by 8 with shuffle
- Need neutral handling for sets, tables, 
multiple-choice questions

Liu et al., Lost in the Middle: How Language Models Use Long Contexts
Zheng et al., Judging llm-as-a-judge with mt-bench and chatbot arena. 
Alzahrani et la., When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards
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Prior works to enforce invariance for listwise inputs

- Self-consistency (swap A/B in 
LLM-as-a-judge, ...) -> Needs N! forwards or 
approximations
- Attention alteration methods

- PCW, Set-based Prompting
 - PINE

Wang et al., Eliminating Position Bias of Language Models: A Mechanistic Approach
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Example: enforcing invariance via altering self-attention
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Original Model



6

Example: enforcing invariance via altering self-attention
Original Model
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Example: enforcing invariance via altering self-attention
Original Model
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....

Example: enforcing invariance via altering self-attention
Original Model
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Example: enforcing invariance via altering self-attention
Invariant Model
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Causal X , open ALL attention for segments (bidirectional)

Example: enforcing invariance via altering self-attention
Invariant Model
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But, the position of query tokens should be placed last to follow 
the causal nature!

Causal X , open ALL attention for segments (bidirectional)

Example: enforcing invariance via altering self-attention
Invariant Model
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But, the position of query tokens should be placed last to follow 
the causal nature!

- Query token Last
- Order of segments 
independent on initial ordering

Example: enforcing invariance via altering self-attention
Invariant Model
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- Query token Last
- Order of segments 
independent on initial ordering

Also, the order of segments should not depend on the initial 
ordering (apple -> orange -> banana) of segments!

Example: enforcing invariance via altering self-attention
Invariant Model
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How? compute pairwise attention (relevance) among segments 
without positional ID

x x x

0.2 0.40.6

- Query token Last
- Order of segments 
independent on initial ordering

Example: enforcing invariance via altering self-attention
Invariant Model: PINE's way
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Re-order segments so that relevant 
segment get closer to query segment!

0.60.2 0.4

- Query token Last
- Order of segments 
independent on initial ordering

Example: enforcing invariance via altering self-attention
Invariant Model: PINE's way
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Problem: need to re-calculate pairwise relevance labels for every query tokens

x x x

- Query token Last
- Order of segments 
independent on initial ordering

Example: enforcing invariance via altering self-attention
Invariant Model: PINE's way
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Problem: need to re-calculate pairwise relevance labels for every query tokens

x x x

- Query token Last
- Order of segments 
independent on initial ordering

Example: enforcing invariance via altering self-attention
Invariant Model: PINE's way



Methodology: Order-invariant causal LMs
- PINE: Bidirectional processing with Q-K similarity

- Has to obtain the same attention representation,
   regardless of initial ordering of segments
- Places query IDs last, sorts other segments in a order-invariant way
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Self-attention patterns (x = query, y = key) across order-invariant models



Limitations of prior works

1. Training and inference distribution mismatch
- PCW, Set-based prompting: No cross-segment context
- PINE: per-query sort -> O(O(n²) + instability)
- Frequent ID changes cause OOD behavior -> drops its ability
- Computationally expensive (per-query KV attention compute)
- Numerical Instability (arising from attention assignment)

-> Zero-shot order-invariant LMs have 
been proposed, but had limitations in two 
aspects:

19



Limitations of prior works

2. Fail to extend to real-life scenarios (order-invariant + order-sensitive)
- Does not consider hybrid cases (e.g., MMLU)
- Cannot mix order-sensitive segments

-> Zero-shot order-invariant LMs have 
been proposed, but had limitations in two 
aspects:
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Methodology: Order-invariant causal LMs

- Keep the bidirectional structure, but alter the position assignment in a 
simple and stable way!
- Define a single global ordering + circular arrangement

Circular arrangement: Reuse global ordering by allocating them in a circular 
way!

- shift global orders so that query token gets last, but relative ordering of 
others is maintained

- Solution: RoToR
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RoToR, global ordering + circular arrangement
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How? simple Hierarchical Lexical Sorting* of 
segments depending on their tokenized IDs

16 > 12
8 > 5 > 3

Global 
order:

* We also experiment with other global sorting methods, such 
as reranking-based and freqency-based
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Global 
Order:

....

Invariant Model: RoToR's way

Example: enforcing invariance via altering self-attention
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Global 
Order:

....

Invariant Model: RoToR's way

Example: enforcing invariance via altering self-attention



RoToR - Key Contributions

1. Training and inference distribution mismatch
- Stable, order-invariant solution (RoToR)
- Query-agnostic global ordering with minimal positional ID modifications

2. Fail to extend to hybrid cases
- Selective Routing, which switches between original / invariant LMs based on 
confidence
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RoToR v.s. PINE (Schematic)

PINE: query‑dependent grid, RoToR: fixed order, rotate per query
-> Stable IDs, zero collisions, less computation

PINE RoToR
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RoToR v.s. PINE (Schematic)

PINE: query‑dependent grid, RoToR: fixed order, rotate per query
-> Stable IDs, zero collisions, less computation
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Selective Routing: extend to hybrid cases (e.g., MMLU)

- Compute confidence of Original & RoToR outputs
- Choose higher p + α (α=0.2)
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Experimental Setup

- Benchmarks:
- Lost-in-the-Middle (LitM)
- Knowledge Graph QA (KGQA): Mintaka
- MMLU: selective routing cases
- LongBench: long context scenarios (Appendix)

- Model backbones:
- Llama‑3.1‑8B/70B
- Qwen‑1.5‑4/7/72B-Chat

- Metrics: best_subspan_em (LitM),  EM, F1, Acc. (KGQA), Acc. (MMLU)
- Methods: Original (order-sensitive), PCW, Set-based prompting, PINE, RoToR
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Efficiency Gains (over PINE)

- Less computation:
- Overhead FLOPs ↓ 98 % (72B)

- Faster:
- E2E Latency ↓ 23‑43 % on LitM

- Reduces OOD:
- Perplexity ↓; collision rate 0 %
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Results: Lost-in-the Middle (LitM)

- Original Model fluctuates performance
- Ours (RoToR): maintains stable & higher performance than other 
order-invariant models

On Llama-3.1-8B-Inst.
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Results: 
Lost-in-the 
Middle 
(LitM)

- Full results
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Results: KGQA
- Top-30 and Top-50 knowledge triples per query
- Test before / after shuffling segments to see robustness
- RoToR obtains lower stdev (better stability) + higher performance than PINE
- Trend persists for > 70B model variants
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Results: MMLU (selective routing)

- Order-invariant models fail (than the original model) with single use (expected)
- Selective Routing shows improved performance and stability across input 
re-orderings
- High S.R. (Oracle) value indicates high potential for further accuracy gains by 
optimizing choices on routing methods 34



Summary

We propose RoToR: a simple, 
effective order-invariant LM that..
- Can be applied to any zero-shot 
decoder-only model (with RoPE)
- Global sort + circular IDs mitigate 
positional bias
- Selective Routing enables practical use
- Paper: https://arxiv.org/pdf/2502.08662
- Code: github.com/soyoung97/RoToR

Code Paper

Thank you!
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Appendix
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Appendix: computational overhead
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Appendix: Example Input/Output
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Appendix: Example Input/Output
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Appendix: Example Input/Output
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Appendix: LongBench-2WikiMultiHopQA
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Appendix: Selective Routing ratio
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